Коварство графического метода

Решим графически уравнение, используя Desmos:


Слева от знака равенства — показательная функция с основанием, меньшим 1, значит, функция убывающая (зеленый график). Справа от знака равенства — логарифмическая функция, также убывающая (синий график).

Далее… »

На первый взгляд, графики имеют одну точку пересечения, и из соображений симметрии она лежит на прямой y=x.

Не будем спешить с выводами. Увеличим область в районе точки пересечения:

Desmos почему-то выделил три точки. Сделаем еще крупнее:

Оказывается, синий график, прежде чем уйти ниже зеленого графика, делает почти незаметный финт ушами, тем самым добавляя еще две точки перечения — x=0,5 и x=0,25. Подстановкой можно убедиться, что это точные корни нашего уравнения.

Заменим в уравнении 1/16 на 1/256 — разрыв между кривыми увеличился, три точки пересечения хорошо видны:

Для сравнения уравнение с 1/2 вместо 1/16:


Как мы и предполагали вначале, только одна точка пересения. Качественный скачок во взаимном расположении кривых происходит, по всей видимости, где-то между 1/2 и 1/16 (примерно 0.0659855).

Вот как это уравнение решила WolframAlpha:


Точки пересечения любезно выделены.

Вывод: графический метод решения уравнений имеет ограничения, связанные с тем, что линии графиков не идеально тонкие и могут сливаться на определенном участке, и тем не менее, компьютерные построители графиков (а кто сейчас строит графики вручную) обладают достаточным интеллектом, чтобы выделить точки пересечения и не дать пользователю потерять существенные детали.

Более подробно это уравнение проанализировано в статье:
Сидоров Ю. Об одном замечательном уравнении. Журнал «Квант», 1990-05

Сплетенье цифр

Трапеция Гарфилда и числа Фибоначчи

Выберем произвольные положительные числа p и q, и положив один из катетов равным 1, построим следующую трапецию Гарфилда:

Далее… »

Очевидно, что

И поскольку , получаем тождество Эйлера для арктангенсов:


Когда p=q=1, получаем частный случай, который мы уже рассматривали в заметке про число пи:

Когда p=2, q=1, получаем

Подставляем в предыдущее тождество, получаем формулу Хаттона:

С помощью формулы Хаттона, в сочетании с разложением арктангенса в ряд, в 1847 году датский математик Томас Клаузен (Clausen) вычислил 248 знаков числа π (напомню, компьютеров тогда не было).

Обозначим Fn последовательность чисел Фибоначчи, F1=F2=1, Fn+1=Fn+Fn-1. Получим тождество:

Для доказательства принять p=F2n, q=F2n-1 в тождестве Эйлера и использовать тождество Кассини

Литература

Бревно или крокодил

Далее… »

память поколений

Трапеция Гарфилда и неравенства о среднем

Задача. Пусть c — длина гипотенузы прямоугольного треугольника, длины двух других сторон треугольника равны a и b.
Доказать, что

Когда выполняется равенство?
(Канадская математическая олимпиада, 1969, задача 3)

Далее… »

Рассмотрим трапецию Гарфилда такого вида:


Неравенство мгновенно доказано: верхняя сторона трапеции по теореме Пифагора равна и она не может быть меньше нижней стороны трапеции a+b. Равенство достигается, только если нижняя и верхняя стороны параллельны, то есть a=b.

Отсюда, кстати, следует, что для любого угла

Разделим обе части доказанного неравенства на 2 и вспомним, что , получим частный случай неравенства о средних:


Слева — среднее арифметическое, справа — среднее квадратичное двух чисел. Равенство достигается в случае равенства a и b.

Точно также без слов, опираясь только на теорему Пифагора, докажем неравенство о среднем арифметическом и среднем геометрическом:


Если положить a=x, b=1/x, получим


Используя еще одну трапецию Гарфилда, это неравенство можно улучшить:

Продолжение следует…

Трапеция Гарфилда и число пи

Возьмем конструкцию из второй части заметки про формулы двойного угла и получим с ее помощью несколько красивых формул для числа пи.
Разобьем прямоугольник на клеточки 2 х 3 и впишем треугольник следующим образом:

Далее… »

Все четыре треугольника — прямоугольные.
Гипотенуза желтого треугольника по теореме Пифагора равна корню из 5.
Гипотенуза зеленого треугольника тоже равна корню из 5 (это потому что зеленый и желтый треугольники равны).
Гипотенуза синего треугольника равна корню из 10.
Проверяем выполняется ли теорема Пифагора для белого треугольника: 5+5=10, значит, белый треугольник тоже прямоугольный и заодно равнобедренный.
Такая конструкция из трех прямоугольных треугольников ABCF называется трапецией Гарфилда. Джеймс Гарфилд (1831–1881):


Джеймс Гарфилд был одним из самых незаурядных президентов США.
В юности он успел побывать боцманом и плотником, позже работал адвокатом, учителем, директором одного из высших учебных заведений. Он придумал и опубликовал своё доказательство теоремы Пифагора.

Вспоминаем, что тангенс — это отношение противолежащего катета к прилежащему. Значит,
tg ∠EFC = 1
tg ∠AFE = 2
tg ∠DFC = 3
В сумме эти углы составляют развернутый угол, отсюда:

Сравните с доказательством этой формулы, опубликованным на math.stackexchange.com.
 

Представим аналогичным образом угол C как сумму трех углов и получим:

И теперь представим угол EFC как сумму двух углов:

Трапецию Гарфилда можно применить для вывода формулы синуса и косинуса суммы углов.


Примем гипотенузу серого треугольника равной 1. Распишем катеты используя определения синуса и косинуса.

Вот и все, осталось списать формулы с рисунка:

И еще две формулы получим элементарной заменой угла β на -β:

Добавим в копилку еще четыре тригонометрические формулы, которые учить не надо — в любой момент вы их восстановите за одну минуту с помощью трапеции Гарфилда.

Домашнее задание. Получить с помощью трапеции Гарфилда формулы для тангенса суммы и разности двух углов.

 


 

Доказательство Гарфилда теоремы Пифагора на с. 161 журнала New-England Journal of Education, апрель 1876:


Обратите внимание на нотацию: вместо скобок черта над выражением.

Продолжение следует…

Пуловер с цельновязанными рукавами

Далее… »


шнуровка
Источник: Сабрина 2017-05

Формулы двойного угла и трапеция Гарфилда

Количество тригонометрических формул в школьном курсе математики поражает воображение. Нужно ли все их учить наизусть? Нет, не нужно — в (почти) любой момент мы можем заглянуть в википедию или справочник. Однако есть пара-тройка ситуаций, когда интернета под рукой нет — это необитаемый остров и экзамен. Сегодня рассказ о том, как получить формулы двойного угла в такой экстремальной ситуации, каковой является отсутствие интернета, не пользуясь шпаргалками и подсказками соседей.

Способ 1

Вспомним, какие углы отличаются в два раза — верно, центральный угол ровно в два раза больше вписанного угла, опирающегося на ту же дугу. Учитывая, что тригонометрические функции определяются для единичной окружности, изобразим эти углы следующим образом:

Далее… »

Обозначим вписанный угол x, тогда центральный угол составит 2x.
Используя определения синуса и косинуса, найдем катеты большого треугольника — это произведение гипотенузы (она равна 2) на синус угла x для противолежащего катета и на косинус угла x для прилежащего катета.
Все эти факты отображены на рисунке, набросать который не потребует ни усилий, ни времени.

Дополняем рисунок:

А теперь просто списываем формулы с рисунка.
Фокусируемся на светло-сером треугольнике — противолежащий катет равен произведению синуса угла на гипотенузу:

Снова смотрим на светло-серый треугольник — прилежащий катет равен произведению косинуса угла на гипотенузу:

Отсюда мгновенно с использованием основного тригонометрического тождества получаем еще три формулы:

Формула для тангенса получается делением на квадрат косинуса:

Из формул двойного угла элементарно получаются формулы половинного угла:

Способ 2

Разовьем успех. Построим прямоугольный треугольник с острым углом x и гипотенузой, равной 1 (на рисунке белый); затем на катетах построим два голубых прямоугольных треугольника, тоже с углами, равными x; серый треугольник получится сам собой:


Белый и голубые треугольники образуют фигуру, которая называется трапецией Гарфилда.

Поступим аналогично: распишем длины катетов через синус и косинус угла x. А теперь приравниваем верхнюю формулу нижней, а левую — правой:


Получили формулы двойного угла без единой выкладки, используя только определения синуса и косинуса.

Выводы

Итак, из курса тригонометрии необходимо запомнить:

1) определение синуса, косинуса, тангенса;
2) ОТТ — основное тригонометрическое тождество, которое представляет собой теорему Пифагора, записанную в терминах синуса и косинуса:

Десятки тригонометрических формул можно не учить и не выводить, а реконструировать при необходимости по рисунку.

Продолжение следует…

Банстед / Banstead

Далее… »

Источник: Knitting Plus — Mastering Fit, Interweave Knits, Summer 2011
Дизайнер: Lisa Shroyer (2011)
Вам потребуется: 900 – 1500 м пряжи Blue Sky Fibers Suri Merino (60% альпака, 40% меринос, 150 м / 100г), спицы 4.5 мм круговые и чулочные

Проект на Ravelry: Banstead

(Для просмотра необходимо авторизоваться)
Скачать описание (deposit)

Пуловер с косами

Далее… »

Источник: Lets knit series 2009-2010

Copyright © All Rights Reserved · Green Hope Theme by Sivan & schiy · Proudly powered by WordPress